6.S094: Deep Learning for Self-Driving Cars 2018

https://selfdrivingcars.mit.edu Lex Fridman

Lecture 1: Deep Learning

MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fridman https://selfdrivingcars.mit.edu lex.mit.edu

han January du 2018

最专业报告分享群:

•每日分享5+科技行业报告

- 同行业匹配,覆盖人工智能、大数据、机器人、 智慧医疗、智能家居、物联网等行业。
- 高质量用户,同频的人说同样的话

扫描右侧二维码, 或直接搜索关注公众号: 智东西(zhidxcom) 回复"报告群"加入

6.S094: Deep Learning for Self-Driving Cars

<u>Lex Fridman</u> Instructor

<u>Jack Terwilliger</u> TA

<u>Julia Kindelsberger</u> TA

<u>Dan Brown</u> TA

Michael Glazer

TA

<u>Li Ding</u> TA

<u>Spencer Dodd</u> TA

<u>Benedikt Jenik</u> TA

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu Lex Fridman January lex.mit.edu 2018

6.S094: Deep Learning for Self-Driving Cars

- Website: selfdrivingcars.mit.edu
- Email: deepcars@mit.edu
- Slack: deep-mit.slack.com
- For registered MIT students:
 - Create an account on the website.
 - DeepTraffic 2.0 neural network competition entry that achieves 65mph by 11:59pm, Fri, Jan 19
- Competitions
 - DeepTraffic (Deep RL in Browser)
 - SegFuse (Deep Learning in Video)
 - DeepCrash (Deep RL + Computer Vision)
- Guest Speakers (see schedule)
- 2018 Shirts (free in-person)

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

January

DeepTraffic: Deep Reinforcement Learning

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references Lex Fridman January lex.mit.edu 2018

SegFuse: Dynamic Driving Scene Segmentation

Massachusetts Institute of Technology For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman lex.mit.edu

January

DeepCrash: Deep RL for High-Speed Crash Avoidance

Massachusetts Institute of Technology For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman lex.mit.edu January

DeepTesla: End-to-End Driving

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references January 2018

Lectures and Guest Talks

Lecture Mon, Jan 8, 7pm Room 54-100
Deep Learning: Overview and Recent Advances
[Slides] - [Lecture Video] (Available Soon)

Lecture Tue, Jan 9, 7pm Room 54-100 Self-Driving Cars: Overview and Recent Advances [Slides] - [Lecture Video] (Available Soon)

Lecture Wed, Jan 10, 7pm Room 54-100
Deep RL for Driving Fast and Avoiding Crashes
[Slides] - [Lecture Video] (Available Soon)

Lecture Thu, Jan 11, 7pm Room 54-100 Deep Learning for Driving Scene Understanding [Slides] - [Lecture Video] (Available Soon)

Guest Talk Fri, Jan 12, **1pm** <u>Room 32-123</u> * Notice: Different time and room! Sacha Arnoud Director of Engineering, Waymo

Guest Talk Tue, Jan 16, 7pm Room 54-100 Emilio Frazzoli CTO, nuTonomy Previously: Professor, MIT

Lecture Wed, Jan 17, 7pm Room 54-100 Deep Learning for Driver State Sensing [Slides] - [Lecture Video] (Available Soon)

Guest Talk Thu, Jan 18, 7pm <u>Room 54-100</u> Oliver Cameron CEO, Voyage Previously: Head, Udacity Self-Driving Car Program

Guest Talk Fri, Jan 19, 7pm Room 54-100 Sterling Anderson

Co-Founder, Aurora Previously: Director, Tesla Autopilot

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references han January du 2018

Why Self-Driving Cars?

- Quite possibly, the first wide reaching and profound integration of personal robots in society.
 - Wide reaching: 1 billion cars on the road.
 - **Profound:** Human gives control of his/her life directly to robot.
 - **Personal:** One-on-one relationship of communication, collaboration, understanding and trust.

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references A self-driving car may be more a Personal Robot and less a perfect Perception-Control system. Why:

• Flaws need humans:

The scene understanding problem requires much more than pixel-level labeling

• Exist with humans:

Achieving both an enjoyable and safe driving experience may require "driving like a human".

Why Self-Driving Cars?

Opportunity to explore the nature of intelligence and the role of intelligent systems in society, because full autonomy may require human-level artificial intelligence.

See also our class exploring human-level artificial intelligence: MIT 6.S099 Artificial General Intelligence https://agi.mit.edu

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT Course 6.5099: 7pm. Every day. Jan 22 to Feb 2. Listeners are welcome. Schedule available online. https://agi.mit.edu

Ray Kurzweil (Google) Andrej Karpathy (Tesla) Marc Raibert (Boston Dynamics) Josh Tennenbaum (MIT) Ilya Sutskever (OpenAl) Lisa Feldman Barrett (NEU) Nate Derbinsky (NEU) Lex Fridman (MIT)

Artificial General Intelligence

Singularity Deep Learning Robotics Computational Cognitive Science Deep Reinforcement Learning Emotion Creation Cognitive Modeling Artificial General Intelligence

Human-Centered Artificial Intelligence Approach

Human Needed → 10%

Yes

Solve the perception-control problem where **possible**:

And where **not possible**: involve the human

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references Lex Fridman January lex.mit.edu 2018

Why Deep Learning?

Deep Learning:

Learn effective perception-control from data

Solve the perception-control problem where **possible**:

Deep Learning:

Learn effective human-robot interaction from data

And where **not possible**: involve the human

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references Lex Fridman January lex.mit.edu 2018

Deep Learning is **Representation Learning**

(aka Feature Learning)

Intelligence: Ability to accomplish complex goals.

Understanding: Ability to turn complex information to into simple, useful information.

January

Representation Matters

Heliocentrism

Geocentrism

Sun-Centered Model

(Formalized by Copernicus in 16th century)

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

Earth-Centered Model

MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fric https://selfdrivingcars.mit.edu lex.mit.

Lex Fridman January lex.mit.edu 2018

Representation Matters

Task: Draw a line to separate the green triangles and blue circles.

Representation Matters

Task: Draw a line to separate the blue curve and red curve

[146]

January

Deep Learning is **Representation Learning** (aka Feature Learning)

Task: Draw a line to separate the blue curve and red curve

[146]

Lex Fridman MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu lex.mit.edu

January 2018

Deep Learning: Scalable Machine Learning

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

Lex Fridman January lex.mit.edu 2018

- Deep learning approaches improve with **more data**.
- Artificial intelligence system in the real-world are all about generalizing over the **edge cases**

Massachusett Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman lex.mit.edu January

Biological Neural Network

- Thalamocortical brain network (simulation video shown below)
 - 3 million neurons, 476 million synapses •
- Full human brain:
 - 100 billion neurons, 1,000 trillion synapses ٠

/lassachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman lex.mit.edu

January

- Artificial Neural Network
- Human neural network: 100 billion neurons, 1,000 trillion synapses
- ResNet-152 neural network: 60 million synapses

www.cybercontrols.org

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman lex.mit.edu January

Neuron: Biological Inspiration for Computation

• Neuron: computational building block for the brain

• (Artificial) Neuron: computational building block for the "neural network"

Differences (among others):

- **Parameters:** Human brains have ~10,000,000 times synapses than artificial neural networks.
- **Topology:** Human brains have no "layers". Topology is complicated.
- **Async:** The human brain works asynchronously, ANNs work synchronously.
- Learning algorithm: ANNs use gradient descent for learning. Human brains use ... (we don't know)
- **Processing speed**: Single biological neurons are slow, while standard neurons in ANNs are fast.
- **Power consumption:** Biological neural networks use very little power compared to artificial networks
- Stages: Biological networks usually don't stop / start learning. ANNs have different fitting (train) and prediction (evaluate) phases.

Similarity (among others):

• Distributed computation on a large scale.

Neuron: Forward Pass

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fridman https://selfdrivingcars.mit.edu lex.mit.edu

January 2018

Combining Neurons into Layers

Feed Forward Neural Network

Recurrent Neural Network

- Have state memory
- Are hard to train

Combing Neurons in Hidden Layers: The "Emergent" Power to Approximate

Universality: For any arbitrary function f(x), there exists a neural network that closely approximate it for any input x

Universality is an incredible property!* And it holds for just 1 hidden layer.

* Given that we have good algorithms for training these networks.

January

Deep Learning from Human and Machine

Deep Learning from Human and Machine

Special Purpose Intelligence: Estimating Apartment Cost

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars Lex Fridman https://selfdrivingcars.mit.edu lex.mit.edu

January 2018

(Toward) General Purpose Intelligence: Pong to Pixels

Andrej Karpathy. "Deep Reinforcement Learning: Pong from Pixels." 2016.

Policy Network:

- 80x80 image (difference image)
- 2 actions: up or down
- 200,000 Pong games

This is a step towards general purpose artificial intelligence!

Deep Learning: Training and Testing

Training Stage:

Testing Stage:

MIT 6.S094: Deep Learning for Self-Driving CarsLex FridmanJanuaryhttps://selfdrivingcars.mit.edulex.mit.edu2018

How Neural Networks Learn: Backpropagation

Forward Pass:

Backward Pass (aka Backpropagation):

Adjust to Reduce Error

What can we do with Deep Learning?

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman lex.mit.edu January

Useful Deep Learning Terms

- Basic terms:
 - Deep Learning ≈ Neural Networks
 - Deep Learning is a subset of Machine Learning
- Terms for neural networks:
 - MLP: Multilayer Perceptron
 - DNN: Deep neural networks
 - RNN: Recurrent neural networks
 - LSTM: Long Short-Term Memory
 - CNN: Convolutional neural networks
 - DBN: Deep Belief Networks
- Neural network operations:
 - Convolution
 - Pooling
 - Activation function
 - Backpropagation

Key Concepts: **Activation Functions**

Sigmoid

- Vanishing gradients ٠
- Not zero centered ٠

Tanh

Vanishing gradients

ReLU

Not zero centered ٠

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

[148]

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Lex Fridman January lex.mit.edu 2018
Key Concepts: Backpropagation

Task: Update the weights and biases to decrease loss function

Subtasks:

- 1. Forward pass to compute network output and "error"
- 2. Backward pass to compute gradients
- 3. A fraction of the weight's gradient is subtracted from the weight.

$C = \frac{(y-a)^2}{2}$

Learning Rate

Loss function:

Learning is an Optimization Problem

Task: Update the weights and biases to decrease loss function

Use mini-batch or stochastic gradient descent.

References: [103]

MIT 6.S094: Deep Learning for Self-Driving CarsLex FridmanJanuaryhttps://selfdrivingcars.mit.edulex.mit.edu2018

Optimization is Hard: Vanishing Gradients

Partial derivatives are small = Learning is slow

Optimization is Hard: Dying ReLUs

- If a neuron is initialized poorly, it might not fire for entire training dataset.
- Large parts of your network could be dead ReLUs!

Optimization is Hard: Saddle Point

- SGD - Momentum - NAG - Adagrad - Adadelta - Rmsprop

Hard to break symmetry

Vanilla SGD gets your there, but is slow sometimes.

Key Concepts: Overfitting and Regularization

- Help the network generalize to data it hasn't seen.
- Big problem for small datasets.
- Overfitting example (a sine curve vs 9-degree polynomial):

Massachusetts Institute of Technology For the full updated list of references visit: [24, 20, 140] <u>https://selfdrivingcars.mit.edu/references</u>

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Key Concepts: Overfitting and Regularization

• Overfitting: The error decreases in the training set but increases in the test set.

Massachusetts Institute of Technology

For the full updated list of references visit: [24, 20, 140] https://selfdrivingcars.mit.edu/references

Key Concepts: Regularization: Early Stoppage

Original Set				
Training		Testing		
Training	Validation	Testing		

- Create "validation" set (subset of the training set).
 - Validation set is assumed to be a representative of the testing set.
- Early stoppage: Stop training (or at least save a checkpoint) when performance on the validation set decreases

January

2018

Key Concepts: Regularization: Dropout

- **Dropout:** Randomly remove some nodes in the network (along with incoming and outgoing edges)
- Notes:
 - Usually *p* >= 0.5 (*p* is probability of keeping node)
 - Input layers *p* should be much higher (and use noise instead of dropout)
 - Most deep learning frameworks come with a dropout layer

Key Concepts: Regularization: Weight Penalty (aka Weight Decay)

- L2 Penalty: Penalize squared weights. Result:
 - Keeps weight small unless error derivative is very large.
 - Prevent from fitting sampling error.
 - Smoother model (output changes slower as the input change).
 - If network has two similar inputs, it prefers to ٠ put half the weight on each rather than all the weight on one.
- L1 Penalty: Penalize absolute weights. Result:
 - Allow for a few weights to remain large.

Neural Network Playground http://playground.tensorflow.org

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references January 2018

Deep Learning Breakthroughs: What Changed?

Microprocessor Transistor Counts 1971-2011 & Moore's Law

- Compute CPUs, GPUs, ASICs
- Organized large(-ish) datasets Imagenet
- Algorithms and research: Backprop, CNN, LSTM
- Software and Infrastructure Git, ROS, PR2, AWS, Amazon Mechanical Turk, TensorFlow, ...
- Financial backing of large companies Google, Facebook, Amazon, ...

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

Deep Learning:

Our intuition about what's "hard" is flawed (in complicated ways)

Visual perception:540,000,000 years of dataBipedal movement:230,000,000 years of dataAbstract thought:100,000 years of data

Prediction: Dog

+ Distortion

Prediction: Ostrich

"Encoded in the large, highly evolve sensory and motor portions of the human brain is a **billion years of experience** about the nature of the world and how to survive in it.... Abstract thought, though, is a new trick, perhaps less than **100 thousand years** old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it." - Hans Moravec, Mind Children (1988)

References: [6, 7, 11, 68]

Deep Learning is Hard: Illumination Variability

Massachusetts Institute of Technology https://selefil/unicears.am.ceu/references MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Deep Learning is Hard: Pose Variability and Occlusions

Figure 1. The deformable and truncated cat. Cats exhibit (al-

Parkhi et al. "The truth about cats and dogs." 2011.

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

[69]

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Deep Learning is Hard: Intra-Class Variability

Parkhi et al. "Cats and dogs." 2012.

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Object Recognition / Classification

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat

What is ImageNet?

- ImageNet: dataset of 14+ million images (21,841 categories)
- Let's take the high level category of **fruit** as an example:
 - Total 188,000 images of fruit
 - There are 1206 Granny Smith apples:

What is ImageNet?

ILSVRC Challenge Evaluation for Classification

- Top 5 error rate:
 - You get 5 guesses to get the correct label

- ~20% reduction in accuracy for Top 1 vs Top 5
- Human annotation is a binary task: "apple" or "not apple"

echnology

- Human error: 5.1%
 - Surpassed in 2015
- 2018: ImageNet Challenge moves to Kaggle

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform: 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models
- SENet (2017): 2.99% to 2.251%
 - Squeeze and excitation block: network is allowed to adaptively adjust the weighting of each feature map in the convolutional block.

Same Architecture, Many Applications

This part might look different for:

- Different image classification domains
- Image captioning with recurrent neural networks
- Image object localization with bounding box
- Image segmentation with fully convolutional networks
- Image segmentation with deconvolution layers

Pixel-Level Full Scene Segmentation

Massachusetts Institute of Technology For the full updated list of references visit: https://selfdrivingcars.mit.edu/references January

2018

Colorization of Images

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

s visit: [25, 26]

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Object Detection

R-CNN: Regions with CNN features

Background Removal (2017)

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu Lex Fridman lex.mit.edu

January

2018

pix2pixHD: generate high-resolution photo-realistic images from semantic label maps (2017)

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Flavors of Neural Networks

Massachusetts Institute of Technology

January 2018

Handwriting Generation from Text

Input:

Text --- up to 100 characters, lower case letters work best Deep Learning for Self Driving Cars

Deep Learning for Self-Driving Cars

Output:

Massachusetts Institute of Technology

For the full updated list of references visit: <u>https://selfdrivingcars.mit.edu/references</u> [33]

Applications: Image Caption Generation

a man sitting on a couch with a dog a man sitting on a chair with a dog in his lap

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Video Description Generation

Correct descriptions.

S2VT: A man is doing stunts on his bike.

S2VT: A herd of zebras are walking in a field.

Relevant but incorrect descriptions.

S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

Venugopalan et al.

"Sequence to sequence-video to text." 2015.

Code: <u>https://vsubhashini.github.io/s2vt.html</u>

January

2018

Modeling Attention Steering

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. "Multiple object recognition with visual attention." (2014).

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

[35, 36]

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Drawing with Selective Attention

Reading

Writing

Gregor et al. "DRAW: A recurrent neural network for image generation." (2015).

Code: https://github.com/ericjang/draw

Massachusetts Institute of Technology

MIT 6.S094: Deep Learning for Self-Driving Cars L https://selfdrivingcars.mit.edu le

(Toward) General Purpose Intelligence: Pong to Pixels

Policy Network:

- 80x80 image (difference image)
- 2 actions: up or down
- 200,000 Pong games

This is a step towards general purpose artificial intelligence!

AlphaGo (2016) Beat Top Human at Go

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

[83]

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

AlphaGo Zero (2017): Beats AlphaGo

January

2018
DeepStack first to beat professional poker players (2017) (in heads-up poker)

Current Drawbacks

Defining a good reward function is difficult... **Coast Runners:** Discovers local pockets of high reward ignoring the "implied" bigger picture goal of finishing the race.

In addition, specifying a reward function for self-driving cars raises ethical questions...

Robustness: >99.6% Confidence in the Wrong Answer

January

2018

Robustness: Fooled by a Little Distortion

MIT 6.S094: Deep Learning for Self-Driving Cars https://selfdrivingcars.mit.edu

Current Challenges

- **Transfer learning:** Unable to transfer representation to most reasonably related domains except in specialized formulations.
 - Understanding: Lacks "reasoning" or ability to truly derive "understanding" as previously defined on anything but specialized problem formulations. (Definition used: Ability to turn complex information to into simple, useful information.)
- Requires **big** data: inefficient at learning from data
- Requires **supervised** data: costly to annotate real-world data
- Not fully automated: Needs hyperparameter tuning for training: learning rate, loss function, mini-batch size, training iterations, momentum, optimizer selection, etc.
- **Reward:** Defining a good reward function is difficult.
- **Transparency:** Neural networks are for the most part black boxes (for realworld applications) even with tools that visualize various aspects of their operation.
- Edge cases: Deep learning is not good at dealing with edge cases.

Why Deep Learning?

Deep Learning:

Learn effective perception-control from data

Solve the perception-control problem where **possible**:

Deep Learning:

Learn effective human-robot interaction from data

And where **not possible**: involve the human

Massachusetts Institute of Technology

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references Lex Fridman January lex.mit.edu 2018

Thank You

For the full updated list of references visit: https://selfdrivingcars.mit.edu/references

2018

Thank You

Country	Sessions	% Sessions
1. 🚾 United States	98,928	32.89%
2. 📰 India	29,352	9.76%
3. 💼 China	20,407	6.78%
4. 🥅 Germany	<mark>1</mark> 5,718	5.23%
5. 😹 South Korea	10,493	3.49%
6. 💽 Canada	8,728	2.90%
7. 🚟 United Kingdom	8,717	2.90%
8. 💽 Japan	7,543	2.51%
9. 📩 Russia	6,594	2.19%
10. 🧱 Taiwan	6,353	2.11%

Next lecture: Self-Driving Cars

January <mark>2018</mark>